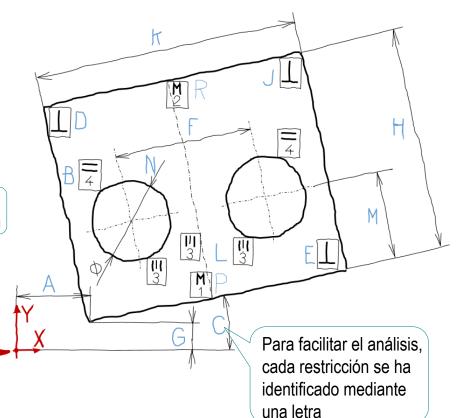
Ejercicio 1.0.1 Placa con restricciones

Tarea

Tarea


Estrategia

Ejecución

Conclusiones

En la figura adjunta se muestra un croquis de una placa que se quiere dibujar en una aplicación CAD paramétrica:

- Para simplificar la figura, no se muestran las cifras de cota
- Se incluyen símbolos de perpendicularidad, igualdad, simetría y pertenencia a punto medio Que afectan a los elementos que tocan
- La figura también incluye el símbolo que marca la posición del origen de coordenadas de la aplicación CAD

Tarea:

A Indique si el croquis está completamente restringido, sub-restringido o sobre-restringido, explicando las razones que justifican la afirmación correspondiente

© 2021 P. Company y C. González Ejercicio 1.0.1 / 2

Estrategia

Tarea

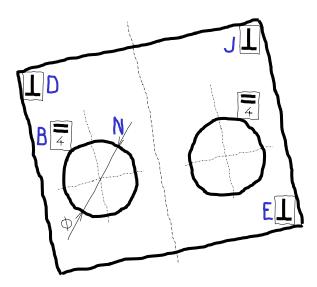
Estrategia

Ejecución

Conclusiones

Compruebe las restricciones por tipos:

- √ Aísle y analice las restricciones que controlan la forma de cada elemento:
 - √ Compruebe que el elemento rectangular no puede cambiar de forma
 - √ Compruebe que los elementos redondos no pueden cambiar de forma
- √ Aísle y analice las restricciones que controlan el tamaño
 - Compruebe que el tamaño del rectángulo está definido
 - Compruebe que el tamaño de los agujeros redondos está definido
- √ Aísle y analice las restricciones que controlan las posiciones relativas entre elementos:
 - Compruebe que la posición simétrica de los agujeros respecto al rectángulo está definida
 - Compruebe que la altura de los agujeros respecto al borde del rectángulo está definida
- Aísle y analice las restricciones que controlan la posición absoluta de la placa completa:
 - Compruebe que el desplazamiento de sólido rígido está restringido
 - Compruebe que el giro de sólido rígido está restringido


Tarea

Estrategia

Ejecución

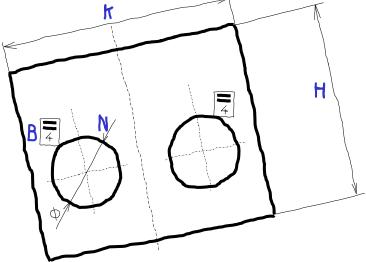
Conclusiones

Identifique las restricciones que controlan la forma de los elementos que conforman la placa...

...para comprobar que:

- √ La placa tiene un contorno rectangular (D, E, J)
- √ Los agujeros son iguales (B), y redondos (símbolo Ø en la cota N)

La cota contiene información de forma y tamaño


Tarea

Estrategia

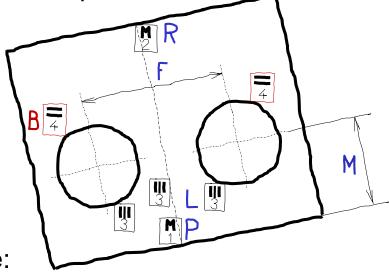
Ejecución

Conclusiones

Identifique las restricciones que controlan el tamaño de la placa...

...para comprobar que

- √ El borde rectangular es de dimensiones K x H
- √ Los agujeros son iguales (B), y de diámetro N


Tarea

Estrategia

Ejecución

Conclusiones

Identifique las restricciones que controlan la posición de los elementos que conforman la placa...

...para comprobar que:

- √ Los agujeros están a una altura M respecto a la base del rectángulo.
- √ Los agujeros están colocados simétricamente (L)

Puesto que los símbolos L tocan a las circunferencias, no solo sus centros, sino ellas mismas son simétricas, por lo que el símbolo B sobra

- Los agujeros están simétricamente separados una distancia F
- √ El eje de simetría está centrado respecto a los puntos medios de los lados largos del rectángulo (P, R)

Tarea

Estrategia

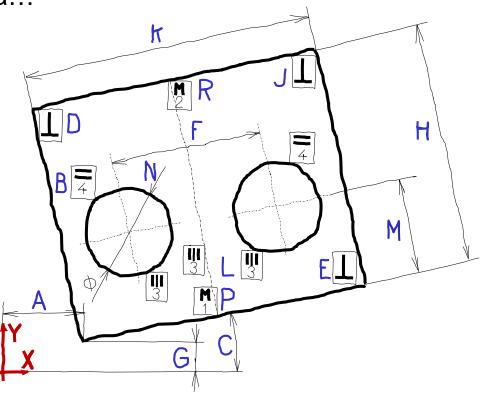
Ejecución

Conclusiones

Identifique las restricciones que controlan la posición y orientación de la placa...

...para comprobar que:

- √ La placa no puede trasladarse sin modificar las cotas A ó G
- √ La placa no puede rotar sin modificar la cota C


Tarea

Estrategia

Ejecución

Conclusiones

Del análisis se concluye que la placa está completamente restringida...

...aunque la restricción B (que hace iguales las circunferencias) es *redundante* con la L (que las hace simétricas)

Debido a que simetría-de-circunferencias implica posición simétrica de sus centros y mismo diámetro

Conclusiones

Tarea Estrategia

Ejecución

Conclusiones

La geometría requiere el empleo preciso de restricciones explícitas para definir las formas geométricas

Las restricciones implícitas no son aceptables, porque no permiten gestionar geometrías parametrizadas

2 Para analizar una figura restringida, es conveniente distinguir, al menos, entre restricciones de forma, tamaño y posición

Aunque se puede distinguir entre movimiento relativo de elementos de la figura, y movimiento absoluto de cuerpo rígido de toda la figura

3 Las restricciones extrínsecas, que vinculan la figura geométrica con una referencia externa (tal como un sistema de coordenadas) son las más apropiadas para controlar la posición y orientación